生物脱氮除磷(Biological Nutrient Removal,简称BNR)是指用生物处理法去除污水中营养物质氮和磷的工艺。经过几十年的发展,脱氮除磷工艺演变出了多种工艺和工艺变种,下面,江苏铭盛环境对污水处理中常用的生物脱氮除磷工艺进行汇总和介绍,以期为我们选择污水处理技术路线,提供多种选项。
五、MUCT工艺
与A2/O工艺相比,UCT工艺在适当的COD/KTN比例下,缺氧池的反反硝化可使厌氧池回流液中的硝氮含量接近于零。当进水COD/KTN较低时,缺氧池无法实现完全的脱氮,导致有一部分硝氮随缺氧回流进入厌氧池,因此又产生了改良型UCT工艺—MUCT工艺(见图6)。
MUCT工艺有两个缺氧池,第一个缺氧池接受二沉池回流污泥,后一个缺氧池接受好氧池硝化液回流,使污泥的脱氮与混合液的脱氮完全分开,进一步减少硝酸盐进入厌氧池的可能性。
该工艺的主要目的是优化除磷效果,第二个缺氧池进水中含有一定量的碳源,该部分碳源反硝化速率较高,在该部分碳源消耗殆尽后,还可进行内源呼吸反硝化,虽然反硝化速率较低,但可进一步提高TN的去除率。
六、Bardenpho工艺系列
6.1 Bardenpho工艺(两级AO工艺)
Barnard(1974)开发的Bardenpho工艺属于早期生物脱氮(除磷)工艺,其目的是不投加外部碳源的情况下脱氮率达到90%以上。如图7所示,在第一个缺氧段,来自硝化段的混合液内回流中含有大量的硝氮,在第一个缺氧段中利用原水中的碳源作为电子供体,进行反硝化,在该段去除的硝氮约占70%(根据设计停留时间的不同,去除率也不相同)。BOD去除、氨氮氧化和磷的吸收都是在硝化(第一个好氧池)段完成的。第二缺氧段提供足够的停留时间,通过混合液的内源呼吸进一步去除残余的硝氮。最终好氧段为混合液提供短暂的曝气时间,以降低二沉池出现厌氧状态和释磷的可能性。
6.2 五段Phoredox工艺(简称为Phoredox工艺)
由于发现Bardenpho工艺中混合液回流中的硝氮对生物除磷有非常不利的影响,通过Bardenpho工艺的中试研究,Barnard(1976)提出真正意义上的生物脱氮除磷工艺流程(见图8),即在Bardenpho工艺前段增设一个厌氧区。这一工艺流程在南非称为五段Phoredox工艺(简称为Phoredox工艺),在美国称之为改良型Bardenpho工艺。改良型Bardenpho工艺通常按低污泥负荷(较长污泥龄)方式设计和运行,目的是提高脱氮效率。
五段Phoredox工艺使用的SRT比A2/O工艺更长(10-20d),其他设计参数为:厌氧区 HRT=0.5-1h;第一缺氧区HTR=1-3h;第二缺氧区HRT=2-4h;第一好氧区HRT=4-12h,第二好氧区HRT=0.5-1h;污泥回流比为50%-100%;混合液回流比为200%-400%。(以上数据仅供参考,具体设计请根据水质进行变动。)
6.3 3段改良Bardenpho工艺(或A2/O工艺)
测试表明,五段Phoredox工艺并不能将硝酸盐含量降低至零,与第一缺氧区相比,第二缺氧池因为采用内源呼吸反硝化导致单位容积反硝化速率相当低。第二缺氧池的低效促使Simpkins和McLaren(1978)提出,在某些情况下可取消第二缺氧池,适当加大第一缺氧池,以获得最大的反硝化处理效果和最低的回流污泥硝酸盐浓度,即3段改良Bardenpho工艺(见图9),也就是目前常用的A2/O工艺。
七、约翰内斯堡(Johannesburg)工艺
本工艺源自南非约翰内斯堡,为UCT变型工艺,该工艺(见图10)的主要目的是尽量减少污泥回流中的硝氮进入厌氧池,提高较低进水浓度废水德尔处理效率(其实脱氮工艺就是碳源的合理分配问题,在不考虑反硝化除磷的情况下,低COD废水,除磷量越多,反硝化脱氮越差,关键是看操作人员如何取舍)。回流活性污泥直接进入缺氧池,该池有足够的停留时间利用内源呼吸去还原污泥中携带的硝氮,然后再进入厌氧区进行释磷反应。(题外话,这个工艺在有些资料上给归为JHB工艺,我认为知道工艺的原理就行,有些问题没必要去纠结。)
八、PASF工艺
针对A2/O工艺中各菌群间污泥龄需求矛盾的问题,近年来有很多研究提出将活性污泥法和生物膜法相结合(非泥膜共存工艺)以缓解这一矛盾。这时系统中就存在两类菌群:短泥龄悬浮活性污泥和长龄生物膜上附着的菌群,这样能很好的解决硝化细菌与聚磷菌间的泥龄矛盾。在此基础之上发展的工艺为PASF工艺,(见图11)。该工艺分为前后两段,前段采用活性污泥法,主要包括厌氧、缺氧、好氧、二沉等;后段采用生物膜法,主要采用曝气生物滤池或者加装填料的生物膜池。
该工艺中硝化作用主要集中在曝气生物滤池内,大量的硝化反应在二沉池之后完成,避免了污泥回流携带硝氮对厌氧释磷的影响。另外硝化菌和聚磷菌的分开更有利于营造最适宜各类菌群生长的环境。该工艺中,菌群分开专性较强,可以缩短各反应器的停留时间。同时,在前段活性污泥工艺中释磷菌在缺少好氧除磷的情况下,反硝化除磷菌(DPB)可以大量富集从而产生反硝化除磷反应,节省碳源、节省能耗。
该工艺在设计中,好氧池起到降低污泥沉降比、进一步降低BOD(不影响硝化反应)的功能,几乎不参与硝化反应,所以该池停留时间可以很短(1-2h)。
九、Dephanox工艺
Wanner(1992)首次提出Dephanox双污泥反硝化脱氮除磷工艺雏形(见图12)。
所谓双污泥系统就是硝化菌独立于反硝化除磷菌(DPB)而单独存在于固定膜生物反应器中。该工艺解决了聚磷菌和反硝化菌竞争碳源的问题(参照反硝化除磷原理),同时也巧妙的解决了活性污泥系统培养硝化菌需要的较长SRT这一不利条件。
在该工艺中,含DPB回流污泥首先在厌氧池完成释磷和储存PHB,经过快沉池分离后,富含DPB的污泥超越固定膜反应器至缺氧池,含氨氮的上清液直接进入固定膜反应器,进行好氧硝化,产生的硝化液流入缺氧池后与DPB污泥接触,完成反硝化除磷反应。由于DPB污泥没有经过好氧池,所以它体内的PHB几乎全用于反硝化吸磷作用。因DPB每吸收1份的正磷酸盐就需要7份的NO3—-N,故而在污水中N/P低于7时,就意味着缺氧池中硝氮含量不足导致不能彻底除磷,因此需要在缺氧池后增加再曝气池,从而保证TP的稳定达标。
其实该工艺还有一定的缺陷,比如:①厌氧池中无法完全吸附有机物,导致固定膜反应器进水中携带有BOD,一方面抑制硝化反应,另一方面造成有机物的浪费和能耗的增高;②在进水氨氮偏高时,缺氧池中反硝化除磷菌不能彻底的去除硝氮,导致出水TN的升高。